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Summary. Various studies have estimated covariance
components as half the difference between the variance
component of the sum of the variable values, for each
observation, and the sum of the corresponding variable
variance components. Although the variance compo-
nents for the separate variables can be computed using
all available data, the variance components of the sum
can be computed only from those observations with
records for both variables. Previous studies have sug-
gested eliminating observations with missing data,
because of possible selection bias. The effect of missing
data on estimates of covariance components and
genetic correlations was tested on sample beef cattle
data and simulated data by randomly deleting differing
proportions of records of one variable for each pair of
variables analyzed. Estimates of genetic correlations
computed with observations with missing data elim-
inated, were more accurate than estimates computed
using all available data. Furthermore, when observa-
tions with missing data were included, estimates of
genetic correlation far outside the parameter space
were common. Therefore, this method should be used
only if observations with missing data have been elim-
nated.
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Introduction

Several methods have been developed to estimate
covariance components from unbalanced data (Ander-
son 1984; Harvey 1970; Henderson 1953, Henderson
1984 b; Schaeffer etal. 1978; Searle and Rounsaville
1974; Thompson 1973). Accurate estimation is most

difficult when some individuals have both variables
recorded, and some have only one variable recorded.
Although methods have been presented to deal with
this type of data structure (Anderson 1984; Henderson
1984 b; Schaeffer et al. 1978; Thompson 1973), most
studies have chosen to eliminate observations with
missing data (Henderson 1984 b). If both variables are
recorded on all observations, covariance components
can be computed relatively easily by equating sums of
cross products to the expectations, similar to the
estimation of variance components where sums of
squares are equated to their expectations (Harvey
1970). Many studies (Agyemang et al. 1985; David et
al. 1983; lloeje et al. 1981; Manfredi et al. 1984;
Mondardes and Hayes 1985; Rothschild et al. 1979)
have used the following equation, derived by Searle
and Rounsaville (1974):

Covyy = (Vary 4y — Vary — Vary)/2 (1)

where Cov,, is the estimate of the covariance com-
ponent of a given factor for variables x and y; Var,,
Vary, and Var,,, are the variance components of the
same factor for x,y, and the sum of x and y; respec-
tively.

Searle and Rounsaville (1974) proved that if both
variables are recorded on all individuals, estimates of
covariance components derived from equation (1) with
Henderson method III (Henderson 1953) will be equal
to those derived by equating sums of cross products to
their expectations (Harvey 1970). This will be true for
other methods commonly used to estimate variance
and covariance components from unbalanced data.
Anderson (1984) suggested that equation (1) be used
only if both variables are recorded on all individuals,
since missing data on one variable may be due to
selection on the other variable, such as the case of first
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and second parity milk yield in dairy cattle. However,
if the probability of a missing record on one variable is
independent of the value recorded for the other vari-
able, intuitively it would seem reasonable to include
these observations in the calculation of Var, and Var,,
but not Var, ., as they should not bias the estimates,
and should have reduced estimation error variances.
Alternatively, observations with only one variable can
be entirely deleted from the analysis. Henderson
(1984 a) has shown that even if estimates of variance
components are unbiased, functions of these estimates
may be biased. Thus even if all the right-hand terms
in equation (1) are estimated by unbiased estimates,
but from different data sets, the estimate of the
covariance component may be biased. Henderson
(1973) concluded that unbiased estimates should be
preferred over biased estimates with smaller prediction
error variances. However, it would seem that if, under
actual conditions, bias is minimal, and the accuracy of
the biased estimator is significantly higher, biased
estimates may be preferred. An example may be
breeding values based on later parity lactation records.

Most reports that used equation (1) do not state
whether observations with missing data were deleted,
but estimates of genetic correlations outside the
parameter space are common (Henderson 1984a). In
general, this has been ascribed to relatively small data
sets, and the general problems of estimating variance
components from unbalanced data.

The goal of this study was to test the effect of
missing data for one variable on estimates of co-
variance components derived from equation (1), both
on field and computer simulated data.

Materials and methods

Field data were 1,475 male Israeli Holstein calves slaughtered
at one slaughter house during 1984. Four variables of economic
importance were studied:

1) Meat, the weight of meat produced from the carcass in kg.

2) Growth rate (slaughter weight — birth weight)/slaughter

age. Birth weight was estimated as 35 kg, and slaughter age

ranged between 240 and 450 days.

3) Percent meat, 100 * Meat/carcass weight.

4) Meat gain (Meat — (Percent meat *.35))/slaughter age.
Basic statistics of these variables are listed in Table 1 and

phenotypic correlations in Table 2. Calves were progeny of

22 sires, from 33 herds. The data set was unbalanced.

Ten data sets of two variables each were generated by
Monte Carlo simulation. Each record was simulated using the
following formula:

,Jk]—S + SC. +H<k+eijk,+ecjk1. (2)

Where Yiji is the record of the 1t progeny of the j" sire
from the k™ herd for the i variable; S;; is the effect of the
j™ sire specific to the i variable; SC; is the effect of the j*
sire common to both variables; H; is the effect of the k' herd

Table 1. Basic statistics of the variables studied?®

Variable Mean SD

Meat (kg) 229.00 25.400
Growth rate (kg/day) 1.09 0.118
Percent meat 53.90 2.200
Meat gain (kg/day) 0.59 0.063

* Data were from 1,475 calves. Variables are defined in the
text

Table 2. Phenotypic correlations between the variables stud-

ied?
Growth Percent Meat gain
rate meat
Meat 0.58 0.22 0.67
Growth rate — -0.22 0.92
Percent meat - 0.16

* Data were from 14,75 calves. Variables are defined in the
text

for the i variable; €;jk1 is the residual of the 1* progeny of
the j™ sire in the L herd specific to the i*" variable; and
ecjy; is the residual common to both variables. Twenty sires
and twenty herds were generated for each simulation.

The effects were simulated by random sampling from
normal distributions with standard deviations of 177 for S;;
and SC;, 500 for H;;, and 685 for e;j; and ecjy,. Thus the
expectation was that the sire component of variance would be
6.25% of the total variance (h?=0.25) and both the genetic
and environmental correlations would be 0.5. The number of
progeny per sire was computed as 5 times a value sampled
from a chi-squared distribution with 10 degrees of freedom
rounded to the closest integer. This approximated the un-
balanced design of progeny per sire generally found in field
data. This procedure resulted in about 1000 progeny per data
set, but the number varied slightly among data sets due to
random sampling. The following algorithm was applied to the
progeny of each sire in order to generate an unbalanced
distribution of sires’ progeny across herds:

1. The progeny was assigned into one of the twenty herds by
random sampling from a uniform distribution over the range
of 1to 20, n,= 0.9.

2. A random number, n, was sampled from a uniform
distribution over the range of 0 to 1.0.

3. If n < n, then the next progeny was assigned to the same
herd as the previous progeny, n. = n, — 0.1, and the procedure
was continued from step 2.

4. If n = n., the procedure was continued from step 1.

Sire and error components of variance were computed by
Henderson’s method III (Henderson 1953) for the four field
data variables and the two simulated variables of each data
set. The analysis model was:

ij1=S-+Hk+e- (3)

where Yy, is the variable value of the 1" calf, son of theJ

sire from the k' herd; S; is the random effect of the j* sire,
H, is the fixed effect of the k' herd; and €kl is the residual
associated with each record. The sire covariance components



were computed by equation (1) between the two variables of
each simulated data set and the pairs of variables: meat and
growth rate, meat and meat gain, and percent meat and meat
gain. These combinations were chosen because the variances
were radically different for the two variables included in each
pair.

The field data were analyzed with no missing data and
with 1, 10, 20, 33, 50, 67, and 75% of the records of the
variable with the smaller variance randomly deleted. Data
were deleted only from the variable with the smaller variance,
in order to enhance the effect of missing data on the
covariance component estimates. By deleting these records,
the variance component of the variable with the larger
variance could be computed using observations not included
in the other variance component estimate. The simulated data
was analyzed with no missing data and with 1 and 10% of the
records randomly deleted for the second variable by sampling
from a uniform distribution. The variance and covariance
components were also computed with the variable with
missing data divided by 10 and 100 to obtain ratios between
the variables similar to those in the field data. Genetic
correlations were estimated as;

r = Cov,,/(Var, Var,)'2 (4)

where 1 is the estimated genetic correlation, Cov,, is the sire
covariance component estimate for variables x and y, and
Var, and Var, are the sire variance component estimates for
the two variables. Genetic correlations were estimated from
variance component estimates derived i) using all available
data, in variable units, r s 1) from the restricted data set
(observations with missing data deleted) in variable units,
rres, y)s ili) for the field data in standardized units, rxs ys
(variable values divided by each variable’s standard devia-
tion); and iv) for the simulated data with the variable with
missing data divided by 10, r(0,y10), and divided by 100,
T(x100,y 100) - 1t can be readily shown that for the restricted data
sets, division of the variables by a constant will not affect the
estimates of covariance component and therefore were not
computed.

Accuracy of the genetic correlation estimates for the
simulated data sets was determined by the estimation error
variance computed as follows:

10
EEan=[ > (rmnp—Rp)2 /10 (5)
p=1

where EEV,,, is the estimation error variance for the m®™
method of analysis [r ), r1es( vy, Txi0,y10)> aNd Tix 00, y100)]
with the n'h fraction of missing data; Tmnp 18 the estimated
genetic correlation for the m™ analysis of the p™" data set with
the n' fraction of missing data; and R, is the true genetic
correlation for the p't data set, computed as the correlation
between the true sire effects, S;; + 8C;, for the two variables.
Since the estimates were deviated from R, rather than the
mean of the estimates, the sum of squares was divided by 10,
the number of R, values generated.

For the field data the true genetic correlation is unknown,
and only three pairs of variables were analyzed. Therefore
accuracy was estimated by the following approximation of
EEV.

3 8
EEV), = Zl Zz(rmnq-rmlq)z /21 (6)
q=1In=

where EEV/, is an estimate of EEV for the m™ method of
analysis [r y), [ 1€5( vy, and I(xs ygl; Tmnq iS the estimate of r
computed with the n' level of missing data for the gt pair of
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variables, in the m* analysis. 1y, q is the estimate of r for the
q™ variable pair in the m' analysis with no missing data.
Equation (6) is based on the assumption that the r,
estimates derived from the complete data with no missing
values are nearly equal to the expectations. As in equation (5),
no degrees of freedom were lost and the sum of squares was
divided by 21. Similar results were obtained for the within
variable-pair genetic correlation means squares estimated by
the following equation, and are therefore not presented.

3 8
MS,=| 2 2 (tmng—Fm.9?| /21 @)
q=1n=1

where T,,., is the mean of the eight correlation estimates
computed for the q'M pair of variables in the m*™ analysis.
Heterogeneity of EEV and EEV’ values were tested by the
F statistic.

Results and discussion

Variance components and genetic correlations for the
three pairs of field data variables are listed in Ta-
ble 3. Cov,, for r res( y) estimates was computed from
variance component estimates derived with missing
data deleted for both variables, while T(xy) estimates
were derived using the estimated sire component of
variance with no missing data for the first variable.
Although the change in the variance component of the
first variable is in most cases small in proportion to its
own value, the change is quite large in proportion to
the magnitude of the variance component of the second
variable. All the genetic correlation estimates com-
puted without observations with missing data, r res y,,
were within the parameter space, despite that up to
75% of the records were deleted, and estimates outside
the parameter space have been commonly found
(Henderson 1984 a). The maximum deviation between
rresy ) computed on the complete data set, and
between those computed on the restricted data sets,
was 0.3. Conversely, the genetic correlations obtained
when observations with missing data on one variable
were used to compute the variance component for the
other variable, were nearly all outside the parameter
space of —~1 to 1, and in most cases by large margins,
even if only 1% of the observations had missing data.
Only one of the estimates derived from standardized
data was outside the parameter space, but in nearly all
cases the estimates derived after elimination of ob-
servations with missing data were closer to the
estimates obtained with the complete data set. EEV’
values were 623.6 for 1y y); 0.067 for ry 453 and 0.012
for rresy y). These estimates differ significantly from
each other at P < 0.035.

The EEV values for the genetic correlations com-
puted from the simulated data sets are presented in
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Table 3. Estimates of variance components and genetic correlations with varying fractions of the records deleted for one variable®

Variables Percent Sire variance components® Genetic correlations®
missing
X y x+y TTES(x,y) T(x, y) Tixs, ys)
Meat X growth rate 0 290,078 6.77 291,516 0.51 0.51 0.51
1 299,089 6.69 300,587 0.53 3 0.55
10 324,333 6.32 325,818 0.52 13.20 0.60
20 327,063 6.07 328,535 0.52 14.45 0.61
33 271,948 6.54 273,177 0.46 -6.13 041
50 208,224 3.88 208,607 021 -38.40 0.00
67 228,776 6.26 230,206 0.59 -2222 0.42
75 191,842 12.45 193,772 0.62 —-25.34 0.32
Meat X meat gain 0 290,078 223 291,220 0.70 0.70 0.70
1 299,089 223 300,261 0.70 6.23 0.73
10 324,337 2.07 325,505 0.71 22.88 0.81
20 327,063 1.98 328,243 0,73 2515 0.84
33 271,948 1.97 272,862 0.62 —11.38 0.57
50 208,224 1.18 208,754 0.53 -69.36 0.28
67 228,776 228 230,062 0.89 -36.91 0.69
75 191,842 3.99 193,122 0.74 —45.06 0.46
Percent meat X meat gain 0 1,937.7 2.28 1,984.5 0.33 0.33 0.33
1 1,805.7 2.30 1,854.6 0.36 —-0.64 0.32
10 2,122.2 2.07 2,164.1 0.30 1.77 0.36
20 2,250.4 1.98 2,292.2 0.30 2.84 0.39
33 1,309.7 1.97 1,323.7 0.12 —-4.98 0.00
50 1,538.1 1.18 1,557.3 021 -3.98 0.01
67 3,994.3 2.28 4,074.7 0.41 16.07 1.06
75 1,867.6 3.99 1,914.4 0.25 -0.15 0.23

¢ Data were from 1,475 calves. Variables are defined in the text

® The variable denoted by “x” is the first variable listed for each pair. Variable units are listed in Table 1. Sire variance components
are listed in 10,000 (variable units)?, for convenience in presentation
€ Tr1684 ), Observations with missing data deleted; r(, ), observations in variable units with missing data included; re ys)p» Ob-

servations in standardized units with missing data included

Table 4. Estimation error variances for estimates of genetic
correlations from simulated data

Type of Percent Estimation No. of estimates
estimate® missing® error outside the
variance® parameter space®
rresg y) 0 0.025 0
1 0.024 0
10 0.041 0
T y) 1 0.024 0
10 0.046 0
T(x10, y10) 1 0.066 0
10 0.867 3
T(x100, y100) 1 4616 8
10 81.676 9

* TTeS(x,y), Observations with missing data deleted; r(x,y),.ob-
servations with missing data included; r9,y10), Observations
with missing data included with the variable with missing data
divided by 10; 100, y100 Observations with missing data in-
cluded with the variable with missing data divided by 100

® Results with no missing data are equal for all four types of
estimates and are therefore presented only for rresiy y)

¢ Calculation of estimation error variance is described in
the text

4 Ten data sets were generated

Table 4. These results are similar to the results on field
data, except that with only 1% of the data deleted, the
T res( ) estimates were no more accurate than the
I(xy) estimates. With 10% of the data deleted, the EEV
of the rres( , estimates is 12% lower than the EEV of
the r y) estimate. The EEV of both ryg,y10) €stimates
with missing data are significantly greater than the
EEV of the corresponding rres y, and ry y estimates,
P < 0.001. The EEV of the ri 00,y 1000) €Stimates are so
large that these estimates are virtually meaningless.
Similar trends are evident for the number of estimates
outside the parameter space.

The results presented here demonstrate that even if
a small fraction of the observations have missing data,
genetic correlations computed from equation (1) may
be meaningless, apparently due to bias. This problem
is somewhat alleviated if the variances of the variables
are similar, but transforming the records to equal
variances does not result in more accurate estimates
than those derived by elimination of missing data. The
fact that similar results were obtained both on field
and simulated data is an indication that these results
should have general applicability.
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