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Summary. Various studies have estimated covariance 
components as half the difference between the variance 
component of the sum of the variable values, for each 
observation, and the sum of the corresponding variable 
variance components. Although the variance compo- 
nents for the separate variables can be computed using 
all available data, the variance components of the sum 
can be computed only from those observations with 
records for both variables. Previous studies have sug- 
gested eliminating observations with missing data, 
because of possible selection bias. The effect of  missing 
data on estimates of covariance components and 
genetic correlations was tested on sample beef cattle 
data and simulated data by randomly deleting differing 
proportions of records of one variable for each pair of 
variables analyzed. Estimates of genetic correlations 
computed with observations with missing data elim- 
inated, were more accurate than estimates computed 
using all available data. Furthermore, when observa- 
tions with missing data were included, estimates of 
genetic correlation far outside the parameter space 
were common. Therefore, this method should be used 
only if observations with missing data have been elim- 
inated. 

Key words: Covariance components - Genetic correla- 
tions - Unbalanced data 

Introduction 

Several methods have been developed to estimate 
covariance components from unbalanced data (Ander- 
son 1984; Harvey 1970; Henderson 1953, Henderson 
1984b; Schaeffer etal. 1978; Searle and Rounsaville 
1974; Thompson 1973). Accurate estimation is most 

difficult when some individuals have both variables 
recorded, and some have only one variable recorded. 
Although methods have been presented to deal with 
this type of data structure (Anderson 1984; Henderson 
1984b; Schaeffer et al. 1978; Thompson 1973), most 
studies have chosen to eliminate observations with 
missing data (Henderson 1984 b). If both variables are 
recorded on all observations, covariance components 
can be computed relatively easily by equating sums of 
cross products to the expectations, similar to the 
estimation of variance components where sums of 
squares are equated to their expectations (Harvey 
1970). Many studies (Agyemang et al. 1985; David et 
al. 1983; Iloeje et al. 1981; Manfredi et al. 1984; 
Mondardes and Hayes 1985; Rothschild et al. 1979) 
have used the following equation, derived by Searle 
and Rounsaville (1974): 

Covx y = (Varx + y - -  Varx - Vary)/2 (1) 

where Covxy is the estimate of the covariance com- 
ponent of a given factor for variables x and y; Varx, 
Vary, and Var• are the variance components of the 
same factor for x, y, and the sum of x and y; respec- 
tively. 

Searle and Rounsaville (1974) proved that if both 
variables are recorded on all individuals, estimates of 
covariance components derived from equation (1) with 
Henderson method III (Henderson 1953) will be equal 
to those derived by equating sums of cross products to 
their expectations (Harvey 1970). This will be true for 
other methods commonly used to estimate variance 
and covariance components from unbalanced data. 
Anderson (1984) suggested that equation (1) be used 
only if both variables are recorded on all individuals, 
since missing data on one variable may be due to 
selection on the other variable, such as the case of first 
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and second par i ty  mi lk  yield in da i ry  cattle. However ,  

i f  the p robab i l i ty  o f  a miss ing record on one var iab le  is 

i ndependen t  o f  the va lue  recorded  for  the o ther  vari-  

able,  in tu i t ively  it would  seem reasonable  to inc lude  
these observa t ions  in the ca lcu la t ion  o f  Varx and Vary, 

but  not  Varx + y, as they  should  not  bias the est imates,  
and should have  reduced  es t imat ion  error  variances.  

Al ternat ive ly ,  observa t ions  with only one  var iab le  can 
be ent i rely de le ted  f rom the analysis. Hende r son  

(1984 a) has shown that  even  if  es t imates  o f  var iance  

componen t s  are unbiased ,  funct ions  o f  these es t imates  

may  be biased.  Thus  even i f  all the  r igh t -hand  terms 

in equa t i on  (1) are e s t ima ted  by unbiased  est imates,  

but  f rom d i f fe ren t  da ta  sets, the  es t imate  o f  the 

covar iance  c o m p o n e n t  m a y  be biased.  Hender son  
(1973) conc luded  that  unbiased  es t imates  should be 

prefer red  over  b iased  es t imates  with smal le r  p red ic t ion  

error  variances.  However ,  it wou ld  seem that  if, unde r  
actual condi t ions ,  bias is min ima l ,  and the accuracy  o f  

the biased es t ima to r  is s ignif icant ly  higher ,  b iased 

es t imates  m a y  be prefer red .  An  example  may  be 

b reed ing  values  based on later  par i ty  lac ta t ion  records. 

Most  reports  that  used equa t i on  ( l )  do  not  state 

whe the r  observa t ions  wi th  miss ing da ta  were  deleted,  
but  es t imates  o f  genet ic  corre la t ions  outs ide  the 

pa rame te r  space are  c o m m o n  (Hender son  1984a). In 

general ,  this has been  ascr ibed  to re la t ively small  data  

sets, and the genera l  p rob l ems  of  es t imat ing  var iance  
componen t s  f rom unba lanced  data. 

The goal  o f  this s tudy was to test the effect o f  

missing data  for one  var iab le  on es t imates  o f  co- 
var iance  componen t s  de r ived  f rom equa t i on  (1), both  

on field and c o m p u t e r  s imu la t ed  data. 

Materials and methods 

Field data were 1,475 male Israeli Holstein calves slaughtered 
at one slaughter house during 1984. Four variables of economic 
importance were studied: 

1) Meat, the weight of meat produced from the carcass in kg. 
2) Growth rate (slaughter weight - birth weight)/slaughter 
age. Birth weight was estimated as 35 kg, and slaughter age 
ranged between 240 and 450 days. 
3) Percent meat, 100 * Meat/carcass weight. 
4) Meat gain (Meat - (Percent meat *.35))/slaughter age. 

Basic statistics of these variables are listed in Table 1 and 
phenotypic correlations in Table 2. Calves were progeny of 
22 sires, from 33 herds. The data set was unbalanced. 

Ten data sets of two variables each were generated by 
Monte Carlo simulation. Each record was simulated using the 
following formula: 

Yijk l  = Sij q- SCj  -Jr- Hik  q'- e i jkl  -I- eCjk I . (2) 

Where Yijkl  is the record of the I th progeny of t h e  jth sire 
from the k th herd for the i th variable; Sij i$ the effect of the 
jth sire specific to the i th variable; SCj is the effect of the jth 
sire common to both variables; H ik is the effect of the k th herd 

Table 1. Basic statistics of the variables studied~ 

Variable Mean SD 

Meat (kg) 229.00 25.400 
Growth rate (kg/day) 1.09 0.118 
Percent meat 53.90 2.200 
Meat gain (kg/day) 0.59 0.063 

Data were from 1,475 calves. Variables are defined in the 
text 

Table 2. Phenotypic correlations between the variables stud- 
ied" 

Growth Percent Meat gain 
rate meat 

Meat 0.58 0.22 0.67 
Growth rate - - 0.22 0.92 
Percent meat - 0.16 

" Data were from 14,75 calves. Variables are defined in the 
text 

for the i th v a r i a b l e ;  e i jkl  is the residual of the I th progeny of 
th the jth sire in the k herd specific to the i th variable; and 

e Cjkl is the residual common to both variables. Twenty sires 
and twenty herds were generated for each simulation. 

The effects were simulated by random sampling from 
normal distributions with standard deviations of 177 for Sij 
and SCj, 500 for H i j ,  and 685 for ei jkl  and eCjk 1. Thus the 
expectation was that the sire component of variance would be 
6.25% of the total variance (h 2= 0.25) and both the genetic 
and environmental correlations would be 0.5. The number of 
progeny per sire was computed as 5 times a value sampled 
from a chi-squared distribution with 10 degrees of freedom 
rounded to the closest integer. This approximated the un- 
balanced design of progeny per sire generally found in field 
data. This procedure resulted in about 1000 progeny per data 
set, but the number varied slightly among data sets due to 
random sampling. The following algorithm was applied to the 
progeny of each sire in order to generate an unbalanced 
distribution of sires' progeny across herds: 

1. The progeny was assigned into one of the twenty herds by 
random sampling from a uniform distribution over the range 
of I to 20, nc = 0.9. 
2. A random number, n, was sampled from a uniform 
distribution over the range of 0 to 1.0. 
3. If  n < n~ then the next progeny was assigned to the same 
herd as the previous progeny, nc = n c -  0.1, and the procedure 
was continued from step 2. 
4. I fn  = nc, the procedure was continued from step 1. 

Sire and error components of variance were computed by 
Henderson's method III (Henderson 1953) for the four field 
data variables and the two simulated variables of each data 
set. The analysis model was: 

Yjkl  = Sj + H k + ejk I (3) 

where Yjkl  is the variable value of the 1 th calf, son of the jth 
sire from the k th herd; Sj is the random effect of the jth sire, 
H k is the fixed effect of the k th herd; and ejk I is the residual 
associated with each record. The sire covariance components 



were computed by equation (1) between the two variables of 
each simulated data set and the pairs of variables: meat and 
growth rate, meat and meat gain, and percent meat and meat 
gain. These combinations were chosen because the variances 
were radically different for the two variables included in each 
pair. 

The field data were analyzed with no missing data and 
with 1, 10, 20, 33, 50, 67, and 75% of the records of the 
variable with the smaller variance randomly deleted. Data 
were deleted only from the variable with the smaller variance, 
in order to enhance the effect of missing data on the 
covariance component estimates. By deleting these records, 
the variance component of the variable with the larger 
variance could be computed using observations not included 
in the other variance component estimate. The simulated data 
was analyzed with no missing data and with 1 and 10% of the 
records randomly deleted for the second variable by sampling 
from a uniform distribution. The variance and covariance 
components were also computed with the variable with 
missing data divided by 10 and 100 to obtain ratios between 
the variables similar to those in the field data. Genetic 
correlations were estimated as; 

r = Coy x y/(Varx Vary) J/2 (4) 

where r is the estimated genetic correlation, COVxy is the sire 
covariance component estimate for variables x and y, and 
Var x and Vary are the sire variance component estimates for 
the two variables. Genetic correlations were estimated from 
variance component estimates derived i) using all available 
data, in variable units, r(x,y); ii) from the restricted data set 
(observations with missing data deleted) in variable units, 
r res(x.y); iii) for the field data in standardized units, r(xs.ys) 
(variable values divided by each variable's standard devia- 
tion); and iv) for the simulated data with the variable with 
missing data divided by 10, rtxJ0.yl0), and divided by 100, 
r(x 100, y 100)" It can be readily shown that for the restricted data 
sets, division of the variables by a constant will not affect the 
estimates of covariance component and therefore were not 
computed. 

Accuracy of the genetic correlation estimates for the 
simulated data sets was determined by the estimation error 
variance computed as follows: 

1 EEVmn = (rmn p -  Rp) 2 / 10 (5) 
p 

where EEVmn is the estimation error variance for the mth 
method of analysis [r(x, y), r res(x, y), r(x ~0, y ~0), and r(x zoo, y 100)] 
with the n th fraction of missing data; rmn p is the estimated 
genetic correlation for the m th analysis of the pth data set with 
the n th fraction of missing data; and Rp is the true genetic 
correlation for the pth data set, computed as the correlation 
between the true sire effects, Sij q- SCj, for the two variables. 
Since the estimates were deviated from Rp rather than the 
mean of the estimates, the sum of squares was divided by 10, 
the number of Rp values generated. 

For the field data the true genetic correlation is unknown, 
and only three pairs of variables were analyzed. Therefore 
accuracy was estimated by the following approximation of 
EEV. 

EEV" = (rmn q - rmlq) 2 /21 (6) 
I n = 2  

where EEV m is an estimate of EEV for the m th method of 
analysis [r(x.y), r res(x y), and r(x~ ys)]; rmnq is the estimate of r 
computed with the n iX level of missing data for the qth pair of 
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variables, in the m th analysis, r m I q is the estimate of r for the 
qth variable pair in the m th analysis with no missing data. 
Equation (6) is based on the assumption that the rml q 
estimates derived from the complete data with no missing 
values are nearly equal to the expectations. As in equation (5), 
no degrees of freedom were lost and the sum of squares was 
divided by 21. Similar results were obtained for the within 
variable-pair genetic correlation means squares estimated by 
the following equation, and are therefore not presented. 

3 8 MSm [q l   rmnq-- m q 21J21 (7) 

where gm.q is the mean of the eight correlation estimates 
computed for the qth pair of variables in the m th analysis. 
Heterogeneity of EEV and EEV' values were tested by the 
F statistic. 

Results and discussion 

Variance components  and genetic correlations for the 
three pairs of field data variables are listed in Ta- 
ble 3. Covxy for r res(x,y ) estimates was computed from 
variance component  estimates derived with missing 
data deleted for both variables, while r(x,y ) estimates 
were derived using the estimated sire component  of 
variance with no missing data for the first variable. 
Although the change in the variance component  of the 
first variable is in most cases small in proport ion to its 
own value, the change is quite large in proportion to 
the magnitude of the variance component  of the second 
variable. All the genetic correlation estimates com- 
puted without observations with missing data, r res(x ' y), 
were within the parameter  space, despite that up to 
75% of the records were deleted, and estimates outside 
the parameter space have been commonly found 
(Henderson 1984a). The max imum deviation between 
r res(x,y) computed on the complete data set, and 
between those computed on the restricted data sets, 
was 0.3. Conversely, the genetic correlations obtained 
when observations with missing data on one variable 
were used to compute the variance component  for the 
other variable, were nearly all outside the parameter  
space o f -  1 to 1, and in most cases by large margins, 
even if only 1% of the observations had missing data. 
Only one of the estimates derived from standardized 
data was outside the parameter  space, but  in nearly all 
cases the estimates derived after el iminat ion of ob- 
servations with missing data were closer to the 
estimates obtained with the complete data set. EEV ~ 
values were 623.6 for r(x,y); 0.067 for r(xs, ys) ; and 0.012 
for r res(x.y). These estimates differ significantly from 
each other at P < 0.05. 

The EEV values for the genetic correlations com- 
puted from the simulated data sets are presented in 



552 

Table 3. Estimates of variance components and genetic correlations with varying fractions of the records deleted for one variable a 

Variables Percent Sire variance components b Genetic correlations c 
missing 

x y x + y  r res(x,y ) r(x,y ) r(xs, ys) 

Meat x growth rate 

Meat x meat gain 

Percent meat x meat gain 

0 290,078 6.77 291,516 0.51 0.51 0.51 
1 299,089 6.69 300,587 0.53 3.77 0.55 

10 324,333 6.32 325,818 0.52 13.20 0.60 
20 327,063 6.07 328,535 0.52 14.45 0.61 
33 271,948 6.54 273,177 0.46 - 6.13 0.41 
50 208,224 3.88 208,607 0.21 - 38.40 0.00 
67 228,776 6.26 230,206 0.59 - 22.22 0.42 
75 191,842 12.45 193,772 0.62 - 25.34 0.32 

0 290,078 2.23 291,220 0.70 0.70 0.70 
1 299,089 2.23 300,261 0.70 6.23 0.73 

10 324,337 2.07 325,505 0.71 22.88 0.81 
20 327,063 1 . 9 8  328,243 0,73 25.15 0.84 
33 271,948 1 . 9 7  272,862 0.62 - 11.38 0.57 
50 208,224 1 . 1 8  208,754 0.53 - 69.36 0.28 
67 228,776 2.28 230,062 0.89 - 36.91 0.69 
75 191,842 3.99 193,122 0.74 - 45.06 0.46 

0 1,937.7 2.28 1,984.5 0.33 0.33 0.33 
1 1,805.7 2.30 1,854.6 0.36 - 0.64 0.32 

10 2,122.2 2.07 2,164.1 0.30 1.77 0.36 
20 2,250.4 1.98 2,292.2 0.30 2.84 0.39 
33 1,309.7 1.97 1,323.7 0.12 - 4.98 0.00 
50 1,538.1 1.18 1,557.3 0.21 - 3.98 0.01 
67 3,994.3 2.28 4,074.7 0.41 16.07 1.06 
75 1,867.6 3.99 1,914.4 0.25 -0.15 0.23 

a Data were from 1,475 calves. Variables are defined in the text 
b The variable denoted by "x" is the first variable listed for each pair. Variable units are listed in Table 1. Sire variance components 
are listed in 10,000 (variable units)5, for convenience in presentation 
c r res(x y), observations with missing data deleted; r(x y), observations in variable units with missing data included; r(xs, ys), ob- 
servations in standardized units with missing data inclucled 

Table 4. Estimation error variances for estimates of genetic 
correlations from simulated data 

Type of Percent Estimation No. of estimates 
estimate a missing b error outside the 

variance c parameter space d 

r res(x, y) 0 0.025 0 
1 0.024 0 

10 0.041 0 

r(• y) 1 0.024 0 
10 0.046 0 

r(xl0, ylO) 1 0.066 0 
10 0.867 3 

r(xl00, yl00) 1 4.616 8 
10 81.676 9 

a r res(x y), observations with missing data deleted; r(x y), ob- 
servatio'ns with missing data included; r(xl0,yl0), obse~ations 
with missing data included with the variable with missing data 
divided by 10; r(xl00 yl00), observations with missing data in- 
cluded with the variable with missing data divided by 100 
b Results with no missing data are equal for all four types of 
estimates and are therefore presented only for r res(x,y) 
c Calculation of estimation error variance is described in 
the text 
d Ten data sets were generated 

Tab le  4. These  results are s imi lar  to the results on f ield 

data, except  that  with only 1% of  the da ta  dele ted ,  the 

r res(x,y ) es t imates  were  no more  accurate  than  the 
r(x,y) estimates.  With  10% of  the data  deleted,  the EEV 
of  the r res(x,y) es t imates  is 12% lower than the EEV of  

the r(x. y) est imate.  The  EEV o f  both  r(x 10, y 10) es t imates  
with missing da ta  are  s ignif icant ly  grea ter  than  the 

EEV of  the cor responding  r res(x,y) and r(x,y) est imates,  

P < 0.001. The  EEV o f  the r(x t00,y 1000) es t imates  are  so 
large that  these es t imates  are  vi r tual ly  meaningless .  

S imi la r  trends are ev ident  for the n u m b e r  o f  es t imates  

outs ide  the p a r a m e t e r  space. 
The  results presented  here  demons t ra t e  that  even  if  

a small  f ract ion o f  the observa t ions  have  miss ing data,  
genet ic  corre la t ions  c o m p u t e d  f rom equa t ion  (1) may  

be meaningless ,  apparen t ly  due  to bias. This  p r o b l e m  
is somewha t  a l lev ia ted  if  the var iances  o f  the var iab les  

are similar ,  but  t ransforming  the records to equa l  
var iances  does not  result  in more  accurate  es t imates  
than those der ived  by e l imina t ion  o f  missing data. T h e  
fact that s imi lar  results were  ob ta ined  both on field 

and s imula ted  data  is an indica t ion  that  these results 
should have  general  appl icabi l i ty .  
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